mineralogy and skarnification processes at the avan cu-fe skarn, northeast of kharvana, nw iran
نویسندگان
چکیده
introduction the avan cu-fe skarn is located at the southern margin of qaradagh batholith, about 60 km north of tabriz. the skarn-type metasomatic alteration is the result of qaradagh batholith intrusion into the upper cretaceous impure carbonates. the studied area belongs to the central iranian structural zone. in regional scale, the studied area is a part of the zangezour mineralization zone in the lesser caucasus. several studies (karimzadeh somarin and moayed, 2002; calagari and hosseinzadeh, 2005; mokhtari, 2008; baghban asgharinezhad, 2012; mokhtari, 2012) including master’s theses and research programs have been done on some skarns in the azarbaijan area considering their petrologic and mineralization aspects. however, before this study, the avan skarn aureole has not been studied in detail. in this paper, various geological aspects of the avan skarn including mineralogy, bi-metasomatic alteration, metasomatism and mineralization during the progressive and retrograde stages of the skarnification processes have been studied in detail. research method this research consists of field and laboratory studies. field studies include preparation of the geological map, identifying the relationship between the intrusion and the skarn aureole, identifying the relationship between different parts of the skarn zone and also collecting samples for laboratory studies. laboratory studies include petrography, mineralography and microprobe studies. cameca sx100 microprobe belonging to geological survey of the czech republic was used in order to determine the chemical composition of the calc-silicate minerals such as pyroxene and garnet in garnet skarn and pyroxene- garnet skarn sub-zones. discussion and conclusion qaradagh batholith is composed of discrete acid to mafic phases including gabbro, diorite, quartz diorite, quartz monzonite, quartz monzodiorite, tonalite, granodiorite, monzogranite and granite porphyry which is dominated by granodiorite-quartz monzonite. granitoids of this batholith are metaluminus, high k calc-alkaline i-type granite (mokhtari, 2008). the avan cu-fe skarn is related to the intrusion of granodioritic-quartz monzonitic part of the qaradagh batholith into the upper cretaceous flysch- type rocks consisting of biomicrite, clay limestone, marl, siltstone and mudstone. the avan skarn consists of three zones of endoskarn, exoskarn and marble. the main cu-fe mineralized zone is related to the exoskarn zone, which has 600 meters of length and 50 meters of thickness, respectively. the exoskarn zone consists of garnet skarn, pyroxene-garnet skarn and ore skarn sub-zones. garnet, belonging to ugrandite series (ad53-89) with more than 50 percentage in volume, is the most important anhydrous calc-silicate mineral in the garnet skarn and the pyroxene-garnet skarn sub-zones. some of the garnet crystals are zoned and their chemical composition changes toward the rim to almost pure andradite (ad99). clinopyroxene which has diopsidic composition (di75-96), is another anhydrous calc-silicate mineral in the exoskarn zone with an abundance that reaches up to 50 percent in volume in pyroxene-garnet skarn sub-zone. the ore skarn sub-zone is located toward the outer part of the exoskarn zone and close to the border of the marble zone. the abundance of ore minerals in this sub-zone reaches up to 50 percentage in volume and includes magnetite, hematite, pyrite, chalcopyrite, bornite, malachite and goethite among which pyrite is the most abundant. in this sub-zone, anhydrous calc-silicate minerals of garnet and clinopyroxene have undergone intensive alteration and are replaced with hydrous calc-silicate (epidote and tremolite- actinolite), oxide (magnetite and hematite) and sulfide (pyrite, chalcopyrite and bornite) minerals. based on the textural and mineralogical studies, the skarnification processes in the studied area can be categorized into two main stages: 1) prograde and 2) retrograde. during the prograde stage, the heat flow of the granitoid has caused isochemical metamorphism and changing more pure limestones to marble and marlly limestones to skarnoid (metamorphism and bi-metasomatism). the high temperature magmatic fluids have caused prograde metamorphism during which anhydrous calc-silicate minerals including garnet and pyroxene have appeared. during the early retrograde stage, i.e. the mineralization sub-stage, lower temperature hydrothermal fluids have caused hydrolysis and carbonization because of which anhydrous calc-silicate minerals along with their fractures and microfractures are changed to hydrous calc-silicate (epidote and tremolite-actinolite), oxide (magnetite and hematite), sulfide (pyrite, chalcopyrite and bornite) and carbonate (calcite) minerals. during the late retrograde stage, relatively low temperature fluids have altered anhydrous and hydrous calc-silicate mineral assemblage formed during the previous stages into a very fine grained mineral assemblage including clay minerals, chlorite and iron hydroxides. presence of replacement textures in ore minerals and anhydrous calc-silicate minerals accompanied with open filling textures in the anhydrous calc-silicate minerals, for example oxide and sulphide veinlets within the garnet crystals, indicate that the mentioned ore minerals have been simultaneously generated with hydrous calc-silicate minerals (epidote and tremolite-actinolite) during the early prograde stage. the presence of minor amounts of wollastonite among the mineral assemblage of the avan skarn, intergrowth of garnet and pyroxene, absence of reaction rim between garnet and clinopyroxene and absence of replacement textures indicate that these minerals have been simultaneously generated within the temperature ranges of 430–600 ºc and ƒo2 > 10-26, respectively. acknowledgements the authors are grateful to the journal of economic geology reviewers and editors for their constructive suggestions to the manuscript. reference baghban asgharinezhad, s., 2012. investigation of genesis, mineralogy and geochemistry of fe-cu skarn in astamal area, ne kharvana, eastern azarbaijan. msc. thesis, university of tabriz, tabriz, iran, 185 pp. (in persian with english abstract) calagari, a.a. and hosseinzadeh, g., 2005. the mineralogy of copper-bearing skarn to the east of the sungun-chay river, east-azarbaijan, iran. journal of asian earth sciences, 28(4-6): 423-438. karimzadeh somarin, a. and moayed, m., 2002. granite and gabbro-diorite associated skarn deposits of nw iran. ore geology reviews, 20(3-4): 127-138. mokhtari, m.a.a., 2008. petrology, geochemistry and petrogenesis of qaradagh batholith (east of syahrood, eastern azarbaijan) and related skarn with considering mineralization. ph.d. thesis, tarbiat modares university, tehran, iran, 347 pp. (in persian with english abstract) mokhtari, m.a.a., 2012. the mineralogy and petrology of the pahnavar fe skarn, in the eastern azarbaijan, nw iran. central european journal of geosciences, 4(4): 578-591.
منابع مشابه
Mineralogy and geochemistry of the Avin kaolin deposit, northeast of Mianeh, East-Azarbaidjan Province, NW Iran
The Avin kaolin deposit is located about 35km of northeast of the Mianeh town, East-Azarbaidjan Province, NW Iran. Field evidence and petrographic studies indicate that development and formation of this deposit is genetically related to alteration of dacite rocks of Eocene- Oligocene age. In attention to mineralogical data, this deposit consists of minerals such as kaolinite, quartz, muscovite-...
متن کاملthe survey of the virtual higher education in iran and the ways of its development and improvement
این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.
Mineralogy and fluid inclusion investigations in the Zarshuran gold deposit, north of Takab, NW Iran
The Zarshuran Carlin-type gold deposit is located about 30 km north of Takab, West-Azarbaidjan Province, NW Iran. Interaction between the ore-forming fluids and the host carbonates and shales resulted in development of the decarbonatization, argillic, alunite, silicic, and sulfide alteration zones in the study area. Based on mesoscopic and microscopic studies on drill core samples, gold mineral...
متن کاملMineralogy and Geochemistry Studies of the Sorkheh Sediment-hosted Stratiform Copper (SSC) Deposit, NW Iran
The Sorkheh deposit in northwestern Iran exhibits several readily visible general characteristics of sediment-hosted stratiform copper (SSC) mineralization. It consists of fine-grained disseminated base-metal sulfides within gray sandstones (gray beds, the basal whitish Miocene sandstone and shallow-water) that overlie a thick sequence of red beds (Miocene Upper Red Formation). The host gray be...
متن کاملORE MINERALOGY AND POLYMETAMORPHOSED PNATURE OF THE ARCHEAN Zn-Cu-Fe MASSIVE SULFIDE DEPOSITS AT THE GARON LAKE MINE, MATAGAMI, QUEBEC, CANADA
Massive Zn-Cu-Fe sulfide deposits at the Garon Lake Mine occur in three sulfide lenses in a group of metamorphosed rhyolite crystal tuffs, metasediments and basalts. The major ore minerals are sphalerite, chalcopyrite, pyrrhotite and pyrite. Minor associated silicates are actinolite, tremolite, chlorite, albite and quartz. Rounded detrital pyrite, magnetite and chert grains and diagenetic p...
متن کاملInvestigation of chemistry and the style of formation of calc-silicate minerals in Aghbolagh skarn zone, north of Oshnavieh, West-Azarbaidjan Province, NW Iran
The Aghbolagh area is located about 21 km north of Oshnavieh city, West-Azarbaidjan Province, NW Iran. This study showed that the Fe-Cu skarn deposit in this area can be separated into two zones, (1) Garnet skarn and (2) Garnet-pyroxene skarn. Based upon the results of electron probe micro-analysis, the garnets are chemically of andradite-grossularite type with dominant andraditic component. Th...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
زمین شناسی اقتصادیجلد ۸، شماره ۲، صفحات ۳۵۹-۰
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023